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ABSTRACT

Training neural networks with high certified accuracy against adversarial examples
remains an open challenge despite significant efforts. While certification methods
can effectively leverage tight convex relaxations for bound computation, in training,
these methods, perhaps surprisingly, can perform worse than looser relaxations.
Prior work hypothesized that this phenomenon is caused by the discontinuity,
non-smoothness, and perturbation sensitivity of the loss surface induced by tighter
relaxations. In this work, we theoretically show that Gaussian Loss Smoothing
(GLS) can alleviate these issues. We confirm this empirically by instantiating GLS
with two variants: a zeroth-order optimization algorithm, called PGPE, which
allows training with non-differentiable relaxations, and a first-order optimization
algorithm, called RGS, which requires gradients of the relaxation but is much more
efficient than PGPE. Extensive experiments show that when combined with tight
relaxations, these methods surpass state-of-the-art methods when training on the
same network architecture for many settings. Our results clearly demonstrate the
promise of Gaussian Loss Smoothing for training certifiably robust neural networks
and pave a path towards leveraging tighter relaxations for certified training.

1 INTRODUCTION

The increased deployment of deep learning systems in mission-critical applications has made their
provable trustworthiness and robustness against adversarial examples (Biggio et al., 2013; Szegedy
et al., 2014) an important topic. As state-of-the-art neural network certification has converged to
similar approaches (Zhang et al., 2022; Ferrari et al., 2022), increasingly reducing the verification
gap, the focus in the field is now shifting to specialized training methods that yield networks with
high certified robustness while minimizing the loss of standard accuracy (Müller et al., 2023; Mao
et al., 2023a; De Palma et al., 2024).

Certified Training State-of-the-art (SOTA) certified training methods aim to optimize the network’s
worst-case loss over an input region defined by an adversarial specification. However, as computing
the exact worst-case loss is NP-complete (Katz et al., 2017), they typically utilize convex relaxations
to compute over-approximations (Gowal et al., 2018; Singh et al., 2018; 2019). Surprisingly, training
methods based on the least precise relaxations (IBP) empirically yield the best performance (Shi
et al., 2021), while tighter relaxations perform progressively worse (left, Figure 1). Jovanović et al.
(2022) and (Lee et al., 2021) investigated this surprising phenomenon which they call the “Paradox
of Certified Training”, both theoretically and empirically, and found that tighter relaxations induce
harder optimization problems. Specifically, they identify the continuity, smoothness, and sensitivity of
the loss surface induced by a relaxation as key factors for the success of certified training, beyond its
tightness. Indeed, all state-of-the-art methods are based on the imprecise but continuous, smooth, and
insensitive IBP bounds (Müller et al., 2023; Mao et al., 2023a; De Palma et al., 2024). However, while
these IBP-based methods improve robustness, they induce severe regularization, significantly limiting
the effective capacity and thus standard accuracy (Mao et al., 2023b). This raises the following
fundamental question:

Can we enable certified training with tight convex relaxations by addressing the discontinuity,
non-smoothness, and perturbation sensitivity, thus obtaining a better robustness-accuracy trade-off?

This Work: Enabling Certified Training with Tight Convex Relaxations In this work we propose
a conceptual path forward to overcoming the paradox by addressing the three issues identified by

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Relaxation Tightness GRAD [%] PGPE [%] RGS [%]

IBP 0.55 91.23 Loss
Smoothing

=⇒
87.02 90.46

CROWN-IBP 1.68 88.76 90.23 90.71
DEEPPOLY 2.93 90.04 91.53 91.88

Figure 1: Illustration of how Gaussian loss smoothing enables certified training with tight relaxations.
We compare the certified accuracy [%] obtained by training a CNN3 network on MNIST ϵ = 0.1 with
different relaxations using either the standard gradient (GRAD) or a gradient estimate computed on
the smoothed loss surface (PGPE and RGS) with the empirical tightness of the method.

prior works. Our key insight is that the discontinuity, non-smoothness, and perturbation sensitivity of
the loss surface can be mitigated by smoothing the worst-case loss approximation with a Gaussian
kernel. We refer to this approach as Gaussian Loss Smoothing (GLS). To instantiate GLS, we propose
two novel certified training methods: (1) a gradient-free method based on Policy Gradients with
Parameter-based Exploration (PGPE) (Sehnke et al., 2010) and (2) a gradient-based method based on
Randomized Gradient Smoothing (RGS) (Starnes et al., 2023). While both methods approximate
GLS which is intractable to compute exactly, they enjoy different benefits: (1) PGPE allows training
with non-differentiable relaxations, while (2) RGS is much more efficient than PGPE. Using these
GLS methods, we empirically demonstrate that tighter relaxations can indeed lead to strictly better
networks, thereby confirming the importance of addressing discontinuity, non-smoothness, and
perturbation sensitivity (right, Figure 1). Critically, with the more precise DEEPPOLY relaxation
(Singh et al., 2019), we show that GLS methods achieve strictly better results than the less precise
IBP. Moreover, we demonstrate that the advantages of GLS improve with increasing network depth,
outperforming state-of-the-art methods applied for the same architecture in many settings, particularly
when precision matters more. Our results demonstrate the promise of GLS for training certifiably
robust neural networks and pave a path towards leveraging tighter relaxations for certified training.

Main Contributions Our core contributions are:

1. A theoretical investigation showing Gaussian Loss Smoothing (GLS) mitigates discontinuity,
non-smoothness, and perturbation sensitivity of the loss surface in certified training with tight
relaxations.

2. A novel PGPE-based certified training method that approximates GLS in zeroth-order optimization,
enabling training with non-differentiable relaxations.

3. A novel RGS-based certified training method that approximates GLS in first-order optimization,
requiring differentiable relaxations, but achieving a speedup of up to 40x compared to PGPE.

4. A comprehensive empirical evaluation of different convex relaxations under GLS with the proposed
methods, demonstrating the promise of GLS-based approaches.

2 TRAINING FOR CERTIFIED ROBUSTNESS

Below, we first introduce the setting of adversarial robustness before providing a background on
(training for) certified robustness.

2.1 ADVERSARIAL ROBUSTNESS

We consider a neural network fθ(x) : X → Rn, parameterized by the weights θ, that assigns
a score to each class i ∈ Y given an input x ∈ X . This induces the classifier F : X → Y as
F (x) := argmaxi fθ(x)i. We call F locally robust for an input x ∈ X if it predicts the same class
y ∈ Y for all inputs in an ϵ-neighborhood Bϵ

p(x) := {x′ ∈ X | ∥x − x′∥p ≤ ϵ}. To prove that a
classifier is locally robust, we thus have to show that F (x′) = F (x) = y,∀x′ ∈ Bϵ

p(x).

Adversarial Attacks and Empirical Robustness Disproving local robustness for a given input x
is done by finding an adversarial example x′ ∈ Bϵ

p(x) such that F (x′) ̸= F (x). The procedure of
searching for adversarial examples is called adversarial attack. The most common attack methods
(Goodfellow et al., 2015; Madry et al., 2018) use first-order gradient information to maximize the
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loss function associated with x′. When such a method fails to find an adversarial example, we say
that the network is empirically robust for the given input x and perturbation radius ϵ.

Robustness Guarantees Local robustness is equivalent to the log-probability of the target class y
being greater than that of all other classes for all relevant inputs, i.e., minx′∈B,i̸=y f(x

′)y −f(x′)i >
0. As solving this neural network verification problem exactly is generally NP-complete (Katz et al.,
2017), state-of-the-art neural network verifiers relax it to an efficiently solvable convex optimization
problem (Brix et al., 2023). To this end, the non-linear activation functions are replaced with convex
relaxations in their input-output space, allowing linear bounds of the following form on their output
f(x) to be computed:

Alx+ bl ≤ fθ(x) ≤ Aux+ bu, (1)
for some input region Bϵ

p(x). These bounds can in turn be bounded concretely by ly =
minx∈B Alix+ bli ∈ R and uy analogously. Hence, we have ly ≤ f(x) ≤ uy .

To obtain (certifiably) robust neural networks, specialized training methods are required. For
a data distribution (x, t) ∼ D, standard training optimizes the network parametrization θ to
minimize the expected cross-entropy loss θstd = argminθ ED[LCE(fθ(x), t)] with LCE(y, t) =
ln
(
1 +

∑
i ̸=t exp(yi − yt)

)
. To train for robustness, we, instead, aim to minimize the expected

worst-case loss for a given robustness specification, leading to a min-max optimization problem:
θrob = argminθ ED

[
maxx′∈Bϵ(x) LCE(fθ(x

′), t)
]
. As computing the worst-case loss by solving

the inner maximization problem is generally intractable, it is commonly under- or over-approximated,
yielding adversarial and certified training, respectively.

Adversarial Training optimizes a lower bound on the inner optimization objective. To this end,
it first computes concrete examples x′ ∈ Bϵ(x) that approximately maximize the loss term LCE
and then optimizes the network parameters θ for these examples. While networks trained this way
typically exhibit good empirical robustness, they remain hard to formally certify and are sometimes
vulnerable to stronger attacks (Tramèr et al., 2020; Croce & Hein, 2020).

Certified Training typically optimizes an upper bound on the inner maximization objective. To
this end, the robust cross-entropy loss LCE,rob(Bϵ(x), t) = LCE(y

∆, t) is computed from an upper
bound y∆ on the logit differences y∆ := y − yt obtained via convex relaxations as described above
and then plugged into the standard cross-entropy loss. As this can induce strong over-regularization
if the used convex relaxations are imprecise and thereby severely reduce the standard accuracy of
the resulting models, current state-of-the-art certified training methods combine these bounds with
adversarial training (De Palma et al., 2022; Müller et al., 2023; Mao et al., 2023a; De Palma et al.,
2024). In the following, we introduce the convex relaxations popular for neural networks.

2.2 CONVEX RELAXATIONS

We now discuss four popular convex relaxations of different precision, investigated in this work.

IBP Interval bound propagation (Mirman et al., 2018; Gehr et al., 2018; Gowal et al., 2018) only
considers elementwise, constant bounds of the form l ≤ v ≤ u. Affine layers y = Wv + b are thus
also relaxed as

W (l+u)−|W |(u−l)
2 + b ≤ Wv + b ≤ W (l+u)+|W |(u−l)

2 + b, (2)

v

y

l u

(a) IBP.

v

y

l u

y ≤ u
u−l (v − l)

y ≥ 0

y ≥ v

(b) DeepPoly.

Figure 2: IBP and DEEPPOLY relaxations of a ReLU with bounded inputs v ∈ [l, u]. For DEEPPOLY
the lower-bound slope λ is chosen to minimize the area between the upper and lower bounds in the
input-output space, resulting in the blue or green area.
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where | · | is the elementwise absolute value. ReLU functions are relaxed by their concrete lower and
upper bounds ReLU(l) ≤ ReLU(v) ≤ ReLU(u), illustrated in Figure 2a.

Hybrid Box (HBox) The HBox relaxation is an instance of Hybrid Zonotope (Mirman et al., 2018)
which combines the exact encoding of affine transformations from the DEEPZ or Zonotope domain
(Singh et al., 2018; Wong & Kolter, 2018; Weng et al., 2018; Wang et al., 2018) with the simple
IBP relaxation of unstable ReLUs, illustrated in Figure 2a. While less precise than DEEPZ, HBOX
ensures constant instead of linear representation size in the network depth, making its computation
much more efficient.

DeepPoly DEEPPOLY, introduced by Singh et al. (2019), is mathematically identical to CROWN
(Zhang et al., 2018) and based on recursively deriving linear bounds of the form

Alx+ al ≤ v ≤ Aux+ au (3)

on the outputs of every layer. While this handles affine layers exactly, ReLU layers y = ReLU(v)
are relaxed neuron-wise, using one of the two relaxations illustrated in Figure 2b:

λv ≤ ReLU(v) ≤ (v − l)
u

u− l
, (4)

where product and division are elementwise. The lower-bound slope λ = 1|u|>|l| is chosen depending
on the input bounds l and u to minimize the area between the upper and lower bounds in the input-
output space. Crucially, a minor change in the input bounds can thus lead to a large change in output
bounds when using the DEEPPOLY relaxation.

CROWN-IBP To reduce the computational complexity of DEEPPOLY, CROWN-IBP (Zhang
et al., 2020) uses the cheaper but less precise IBP bounds to compute the concrete upper- and
lower-bounds u and l on ReLU inputs required for the DEEPPOLY relaxation. To compute the final
bounds on the network output DEEPPOLY is used. This reduces the computational complexity from
quadratic to linear in the network depth. While CROWN-IBP is not strictly more or less precise than
either IBP or DEEPPOLY, its precision empirically lies between the two (Jovanović et al., 2022).

Relaxation Tightness While we rarely have strict orders in tightness (only HBOX is strictly tighter
than IBP), we can empirically compare the tightness of different relaxations given a network to
analyze. Jovanović et al. (2022) propose to measure the tightness of a relaxation as the AUC score
of its certified accuracy over perturbation radius curve. This metric implies the following empirical
tightness ordering IBP < HBox < CROWN-IBP < DEEPPOLY (Jovanović et al., 2022), which
agrees well with our intuition.

2.3 THE PARADOX OF CERTIFIED TRAINING

When training networks for robustness with convex relaxations, higher robustness is achieved by
sacrificing standard accuracy. Usually, more precise relaxations induce less overapproximation
and thus less regularization, potentially leading to better standard and certified accuracy. However,
empirically the least precise relaxation, IBP, dominates the more precise methods, e.g., DEEPPOLY,
with respect to both certified and standard accuracy (see the left-hand side of Figure 1). This is all the
more surprising given that state-of-the-art certified training methods introduce artificial unsoundness
into these IBP bounds to improve tightness at the cost of soundness to reduce regularisation and
improve performance (Müller et al., 2023; Mao et al., 2023a; De Palma et al., 2024).

Jovanović et al. (2022) and Lee et al. (2021) explained this paradox, by showing that these more
precise relaxations induce loss landscapes suffering from discontinuities, non-smoothness, and
perturbation sensitivity (a proxy for difficulty to optimize with gradients), making it extraordinarily
challenging for gradient-based optimization methods to find good optima. Thus the key challenge of
certified training is to design a robust loss that combines tight bounds with a continuous, smooth,
and insensitive loss landscape. In §3, we discuss these challenges in more detail and show how to
overcome them.

4
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3 GAUSSIAN LOSS SMOOTHING (GLS) FOR CERTIFIED TRAINING

In this section, we first show how Gaussian Loss Smoothing can overcome the training issues related
to the paradox and then we exemplify how GLS can be applied to certified training by using either
PGPE (§3.3) or RGS (§3.4). We defer all proofs to App. B.1.

3.1 OPEN CHALLENGES: DISCONTINUITY, NON-SMOOTHNESS AND SENSITIVITY

−2 −1 0 1 2
Parameter Value (w)

0

1

2
Loss

Original

σ = 0.2

σ = 0.5

σ = 1.0

(a) Discontinuity.

−2 −1 0 1 2
Parameter Value (w)

0

4

8
Loss

(b) Sensitivity.

Figure 3: Illustrating the effect of Gaussian
Loss Smoothing on the discontinuity (left) and
sensitivity of loss functions (right).

Recall §2.3, where we discussed the key challenges
of certified training with tighter relaxations, namely
discontinuity, non-smoothness, and sensitivity of the
loss surface. We now illustrate these key challenges
on a toy network and loss in Figure 3.

On the left-hand side (Original in Figure 3a), we
show the DEEPPOLY lower bound of the one-neuron
network y = ReLU(x + w) + 1 for x ∈ [−1, 1]
over the parameter w. As the original bound l =
1 + 1w>0 · (w − 1) is discontinuous at w = 0, a
gradient-based optimization method initialized at
w > 0 will decrease w until it has moved through
the discontinuity and past the local minimum.

The second key factor, non-smoothness, is originally defined as the variation of loss values along the
optimization trajectory. For brevity, we restrict this to the Lipschitz continuity of the loss function,
as a Lipschitz continuous loss function has bounded variation of loss values. A function is called
Lipschitz continuous if there exists a constant L such that |f(x)− f(y)| ≤ L∥x− y∥ for all x,y.
As DEEPPOLY has discontinuities, it is not Lipschitz continuous. We remark that Lipschitz continuity
is particularly important for gradient-based optimization methods, as this controls the theoretical
convergence of such methods.

The third key factor, sensitivity, can be interpreted as the difficulty to optimize with gradients.
Jovanović et al. (2022) show that DEEPPOLY is more sensitive than IBP, thus gradient-based optimiza-
tion methods are more likely to get stuck in bad local minima. We illustrate this with the toy function
shown in Figure 3b. Here the original function has a bad local minimum for w ∈ [−1.5, 0] that a
gradient-based optimizer can get stuck in. To analyze the badness of a loss surface for gradient-based
optimization, we measure the deviation from convexity of the loss function, defined to be D(f) :=
maxx,y∈Rd;λ∈[0,1] δ[f ;x,y, λ], where δ[f ;x,y, λ] := f(λx+ (1− λ)y)− λf(x)− (1− λ)f(y).
If a function has a non-positive deviation from convexity, it is convex, thus gradient-based methods
can find global optimum. Since this directly measures non-convexity, intuitively, a function with
smaller deviation from convexity is easier to optimize with gradient-based methods. We remark that
sensitivity as defined in Jovanović et al. (2022) is different to the deviation from convexity, but the
two are closely related in that both indicate how difficult it is to optimize a function with gradients.

3.2 GAUSSIAN LOSS SMOOTHING FOR CERTIFIED TRAINING

We now discuss how Gaussian Loss Smoothing can address these challenges. The central result in
this section is formalized in Theorem 3.1 (proof in App. B.1):

Theorem 3.1. Let the parameter θ ∈ Rd. Let the nonnegative loss function L(θ) : Rd → R
have bounded growth, that is, L(θ) exp(−∥θ∥2−δ) ≤ M for some δ < 2 and M > 0. Then, the
loss smoothed by an isotropic Gaussian N (0, σ2I), defined as Lσ(θ) := Eϵ∼N (0,σ2I)L(θ + ϵ), is
infinitely differentiable. In addition, the deviation from convexity of the smoothed loss never exceed
that of the original loss, that is, D(Lσ) ≤ D(L); equality holds iff L is an affine function. Further,
assuming θ is in a compact set throughout optimization, Lσ is also Lipschitz continuous.

Theorem 3.1 shows several desired qualities of GLS. First, it shows that GLS can turn any discontinu-
ous loss function into a continuous one that is differentiable everywhere, as visualized in Figure 3a.
Second, GLS can make the loss surface Lipschitz continuous if we optimize in a compact set, thus
ensuring that the loss surface is smooth. Third, GLS can help to overcome the sensitivity issue since
it provably reduces the deviation from convexity as long as the loss function is not affine. As we show
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Loss

(a) σ = 0 (original)

−0.001 0.000 0.001
`2 norm of perturbation ‖∆θ‖2

0.995
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1.005

1.010

Loss

(b) σ = 1× 10−6

−0.001 0.000 0.001
`2 norm of perturbation ‖∆θ‖2

0.995

1.000

1.005

1.010

Loss

(c) σ = 5× 10−5

−0.001 0.000 0.001
`2 norm of perturbation ‖∆θ‖2

0.995

1.000

1.005

1.010

Loss

IBP

CROWN-IBP

DeepPoly

(d) σ = 5× 10−4

Figure 4: The original and Gaussian smoothed loss for different relaxations on a PGD-trained CNN3,
evaluated along the direction of the DEEPPOLY gradient. Losses are normalized by dividing them
with the values at 0, i.e., without perturbation. The smoothed loss is estimated with 128 samples and
the corresponding confidence interval is shown as shaded.

in Figure 3b, depending on the standard deviation, the local minimum can be reduced or removed,
and the loss landscape is thus more favorable. However, the choice of standard deviation is crucial.
While a too-small standard deviation only has a minimal effect on loss smoothness and might not
remove local minima, a too-large standard deviation can oversmooth the loss, completely removing
or misaligning the minima. We again illustrate this in Figure 3b. There, a small standard deviation
of σ = 0.5 works properly, while σ = 0.25 does not smooth out the local minimum, and σ = 1.0
severely misaligns the new global minimum with that of the original function. Overall, GLS has the
theoretical potential to mitigate the key issues, discontinuity, non-smoothness, and sensitivity, for
tight convex relaxations (as identified by Jovanović et al. (2022) and Lee et al. (2021)).

Empirical Confirmation To empirically confirm that GLS can mitigate discontinuity, non-
smoothness, and sensitivity, we plot the original and smoothed loss landscape (along the direction
of the DEEPPOLY gradient) of different relaxations for a CNN3 and different standard deviations in
Figure 4. We normalize all losses by dividing them by their value for the unperturbed weights and
estimate the expectation under GLS with sampling.

We observe that the original loss (Figure 4a) is discontinuous, non-smooth, and highly sensitive to
perturbations for both CROWN-IBP and DEEPPOLY, consistent with the findings of Jovanović et al.
(2022) and Lee et al. (2021). Only the imprecise IBP loss is continuous and smooth, explaining why
the IBP loss is the basis for many successful certified training methods. When the loss is smoothed
with small standard deviations σ = 10−6 (Figure 4b), the local minimum of the DEEPPOLY loss
has a slightly reduced sharpness but is still present. In addition, both the losses for DEEPPOLY and
CROWN-IBP are still highly sensitive. This indicates a too small σ. When the standard deviation
is increased to σ = 5 · 10−5 (Figure 4c), the undesirable local minimum of the DEEPPOLY loss
is removed completely, and both losses become much smoother and less sensitive to perturbations.
However, further increasing the standard deviation to σ = 5 · 10−4 (Figure 4d), we observe almost
flat losses removing the minimum present in the underlying loss, indicating that the smoothing is too
strong. These results empirically confirm the observations in our toy setting and predicted by our
theoretical analysis, showing that GLS mitigates the issues related to the paradox of certified training.

Next, in §3.3 and §3.4, we show how to apply GLS using PGPE and RGS, respectively.

3.3 POLICY GRADIENTS WITH PARAMETER-BASED EXPLORATION (PGPE)

Parameters θ

Perturbed Param. θ′

Loss Decrease

PGPE Gradient

Real Gradient

Figure 5: Illustration of PGPE. First, random
perturbations are sampled around the central
point θ from N (0,σ). Then, the gradient
is estimated as a sum of sampled directions
weighted by the magnitude of loss change in
each direction.

PGPE (Sehnke et al., 2010) is a gradient-free op-
timization algorithm that optimizes the Gaussian
Smoothed loss Lσ(θ) := Eθ′∼N (θ,σ2I)L(θ

′) in
zeroth-order, where the loss is not evaluated at a sin-
gle parameterization of the network, but rather at a
(normal) distribution of parameterizations.

PGPE samples weight perturbation ϵi ∼ N (0,σ2),
and evaluates the loss on θ + ϵi, and θ − ϵi, com-
puting r+i = L(θ + ϵi) and r−i = L(θ − ϵi).
These pairs of symmetric points are then used to
compute gradient estimates with respect to both the
mean of the weight distribution θ and its standard
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deviation σ: ∇θL̂σ(θ) ∝ ∑
i ϵi(r

+
i − r−i ) and ∇σL̂σ(θ) ∝ ∑

i

(
r+i +r−i

2 − b
)

ϵ2i−σ2

σ , where

b = 1
2n

∑
i

(
r+i + r−i

)
is called baseline loss and is the average of loss values over all 2n samples.

Figure 5 visualizes such a gradient estimate. The gradient approximations ∇θL̂σ(θ) and ∇σL̂σ(θ)
are used to update the mean weights θ and the standard deviation σ, respectively. By design, PGPE
approximately optimizes the Gaussian smoothed loss Sehnke et al. (2010).

As no backward propagation is needed to compute these gradient estimates, PGPE is comparable to
neuro-evolution algorithms. In this context, it is among the best-performing methods for supervised
learning (Lange et al., 2023). This property also allows us to apply it for training with tighter, but
non-differentiable bounding methods, such as α-CROWN (Xu et al., 2020).

3.4 RANDOMIZED GRADIENT SMOOTHING (RGS)

While the Loss Smoothing induced by the sampling procedure of PGPE leads to a provably continuous
and infinitely differentiable loss surfaces, it can be costly to compute. To reduce the training costs,
we propose to approximate GLS by RGS (Duchi et al., 2012). RGS approximates the gradient of the
smoothed loss by sampling points θ + ϵi and then averaging the gradients at these perturbed points:

∇θL̂σ(θ) ∝
1

n

∑
i

∇θLσ(θ + ϵi). (5)

While RGS which approximates in first-order does not provably recover in expectation the gradient
of the smoothed loss when the original function is discontinuous (see App. B.3), Duchi et al. (2012)
have shown its empirical effectiveness, even with a tiny sample size (n = 2). Therefore, we apply
this alternative to study the performance of GLS in larger networks, as RGS requires much fewer
samples than PGPE and thus scales better. Further, contrary to before, σ is now a hyperparameter
that needs to be tuned rather than learned. A comparison of training costs is included in App. E.6,
where RGS is shown to be up to 40 times faster than PGPE.

4 EXPERIMENTAL EVALUATION

We now extensively evaluate the effect of GLS via PGPE and RGS on the training characteristics of
different relaxation methods. First, we show in §4.1 that PGPE enables training with tight relaxations,
even when the relaxation is not differentiable. Second, we demonstrate in §4.2 that RGS scales GLS
training to deeper networks, surpassing the performance of the SOTA methods on the same network
architecture in many settings. The impact of different hyperparameters on the performance of the
proposed methods is studied in App. C, and a comparison of PGPE and RGS is provided in App. D.3.
Overall, our results show that GLS can enable certified training with tight relaxations.

Experimental Setup We implement all certified training methods in PyTorch (Paszke et al., 2019)
and conduct experiments on MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky et al., 2009)
and TINYIMAGENET (Le & Yang, 2015) using l∞ perturbations and versions of the CNN3 and CNN5
architectures (see Table 9 in App. E). For more details on the experimental setting including all
hyperparameters, see App. E.

Standard Certified Training For standard certified training using back-propagation (referred to
below as GRAD for clarity), we use similar hyperparameters as in the literature and initialize all
models using the IBP initialization proposed by Shi et al. (2021). In particular, we also use the Adam
optimizer (Kingma & Ba, 2015), follow their learning rate and ϵ-annealing schedule, use the same
batch size and gradient clipping threshold, and use the same ϵ for training and certification in all
settings. For the state-of-the-art methods SABR (Müller et al., 2023), STAPS (Mao et al., 2023a),
and MTL-IBP (De Palma et al., 2024), we conduct an extensive optimization of their network-specific
hyperparameters and only report the best results.

PGPE Training We train our PGPE models using the multi-GPU, multi-actor implementation
from evotorch (Toklu et al., 2023). As PGPE training is computationally expensive, we initialize
from an adversarially trained (PGD, (Madry et al., 2018)) model. This can be seen as a warm-up
stage as is common also for other certified training methods (Shi et al., 2021; Müller et al., 2023;
Mao et al., 2023a). We only use ϵ-annealing for the larger perturbation magnitudes on both MNIST
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Table 1: Comparison of the standard (Acc.) and certified (Cert. Acc.) accuracy of CNN3 network
trained with different certified training methods on the full MNIST and CIFAR-10. We use the
state-of-the-art method MN-BAB (Ferrari et al., 2022) for certification.

Dataset ϵ∞ Relaxation
Nat. Acc. [%] Cert. Acc. [%] Adv. Acc. [%]

GRAD PGPE RGS GRAD PGPE RGS GRAD PGPE RGS

MNIST

0.1

IBP 96.02 94.52 96.13 91.23 87.02 91.77 91.23 87.03 91.77
HBOX 94.79 96.12 95.52 88.18 90.57 90.13 88.18 90.58 90.15
CROWN-IBP 94.33 96.69 96.74 88.76 90.23 91.05 88.77 90.25 91.10
DEEPPOLY 95.95 97.44 97.37 90.04 91.53 91.88 90.08 91.79 92.03

0.3

IBP 91.02 89.16 91.99 77.23 74.00 77.07 77.27 74.08 77.15
HBOX 83.75 86.58 83.81 57.86 70.52 58.37 57.92 70.66 58.69
CROWN-IBP 86.97 90.57 88.86 70.55 71.95 71.91 70.56 72.24 71.94
DEEPPOLY 85.70 91.05 88.51 66.69 74.28 71.36 66.70 74.98 71.49

CIFAR-10

2/255
IBP 48.05 44.55 47.70 37.69 34.09 37.28 37.70 34.10 37.28
CROWN-IBP 44.49 51.19 53.74 35.75 37.51 41.00 35.75 37.65 41.46
DEEPPOLY 47.70 54.17 54.93 36.72 38.95 41.14 36.72 40.20 42.03

8/255
IBP 34.63 30.48 33.23 25.72 21.75 24.56 25.74 21.75 24.58
CROWN-IBP 31.60 32.36 35.17 22.66 21.40 23.92 22.66 21.42 24.18
DEEPPOLY 33.06 31.37 35.61 22.97 22.19 23.81 22.98 22.19 24.21

and CIFAR-10 and choose the learning rate based on stability at the beginning of the training. Unless
indicated otherwise, we run the PGPE algorithm with a population size of nps = 256 and an initial
standard deviation for weight sampling of σPGPE = 10−3.

RGS Training We train our RGS models using the same hyperparameters as for GRAD training.
We use a population size of nps = 2 and an initial standard deviation of σRGS = 10−3. As RGS does
not dynamically adjust the standard deviation, we choose to decay it at the same time steps as the
learning rate. More details about the hyperparameters used can be found in App. E.

Certification We use the state-of-the-art complete verification method MN-BAB (Ferrari et al.,
2022) with the same settings as used by Müller et al. (2023) for all networks independently of
the training method. We note that this is in contrast to Jovanović et al. (2022) who used the same
relaxation for training and verification. By doing this, we aim to assess true robustness regardless of
the tightness of different relaxations.

4.1 PGPE ENABLES TRAINING WITH TIGHT RELAXATIONS

We first compare the performance of training with various differentiable convex relaxations using
either standard backpropagation (GRAD) or the PGPE. The result is shown in Table 1.

GRAD Training We train the same CNN3 on MNIST and CIFAR-10 at the established perturbation
magnitudes using standard certified training with IBP, HBOX, CROWN-IBP, and DEEPPOLY. We
observe that across all these settings IBP dominates the other methods both in terms of standard and
certified accuracy, confirming the paradox of certified training. Specifically, HBOX, CROWN-IBP,
and DEEPPOLY tend to perform similarly, with CROWN-IBP being significantly better at MNIST
ϵ = 0.3, indicating that when the loss is discontinuous, non-smooth and sensitive, tightness of the
training relaxation is less relevant.

PGPE Training Training the same CNN3 with PGPE in the same settings we observe that the
performance ranking changes significantly (see Table 1). Now, training with IBP performs strictly
worse than training with DEEPPOLY across all datasets and perturbation sizes. In fact, the more precise
DEEPPOLY bounds now yield the best certified accuracy across all settings, even outperforming
GRAD-based training methods at low perturbation radii. Interestingly, IBP still yields better certified
accuracy at large perturbation radii than HBOX and CROWN-IBP, although at significantly worse
natural accuracies. This is likely because more severe regularization is required in these settings. For
a more detailed discussion on the issue of certified training for large perturbations see App. D.2

While DEEPPOLY + PGPE outperforms DEEPPOLY + GRAD in almost all settings in Table 1 on
the same network architecture, sometimes by a wide margin, it does not reach the general SOTA
results of classic and heavily optimized GRAD training methods. We believe this is caused by three
key factors: First, PGPE computes a gradient approximation in an nps

2 -dimensional subspace. To
cover the full parameter space, we would need the population size nps to be twice the number of
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network parameters, which is computationally intractable even for small networks. Thus, we only get
low-dimensional gradient approximates, slowing down training (see Table 4 and Figure 7). Second,
again due to the high cost of training with PGPE, we used relatively short training schedules and were
unable to optimize hyperparameters for the different settings. Finally, PGPE-based certified training
is less optimized, compared to standard certified training which has been extensively optimized over
the past years (Shi et al., 2021; Müller et al., 2023; De Palma et al., 2024).
RGS training When applying RGS training to the same CNN3 architecture, we observe that RGS
significantly improves the performace of training with tighter relaxations in all settings. In particular,
DEEPPOLY + RGS outperforms all other methods in the case of small perturbations, while IBP-
GRAD is still the best method for large perturbations. We note that this is potentially because RGS,
as a first-order approximation of GLS, does not necessarily enjoy the continuity that GLS brings.
Still, the performance improvements point toward the potential of RGS to alleviate the issues of tight
relaxations, while also being able to scale to deeper networks, as we show in §4.2.

Table 2: Accuracies of CNN3-tiny on MNIST
ϵ = 0.1 trained with different algorithms.

Method Nat Cert Adv

IBP-GRAD 89.76 82.46 82.48
DEEPPOLY-GRAD 91.27 82.04 82.05
DEEPPOLY-PGPE 91.94 85.00 85.04
α-CROWN-PGPE 92.15 85.15 85.17

PGPE enables non-differentiable relaxations
Next, we show that PGPE has a unique benefit in
that it allows training with non-differentiable relax-
ations, which we demonstrate by training with the
non-differentiable α-CROWN relaxation. Since α-
CROWN is even more expensive than DEEPPOLY,
we train it with a smaller version of CNN3 called
CNN3-tiny and set the number of iterations in α-
CROWN slope optimization to be merely 1. Table 2
shows that training with α-CROWN-PGPE further improves the certified accuracy compared to train-
ing with DEEPPOLY-PGPE. This confirms that PGPE can be used to train with non-differentiable
relaxations, resulting in even better robustness-accuracy trade-offs. We remark that PGPE is not
limited to α-CROWN, but can be used with any non-differentiable relaxation, including those relying
on branch and bound-based procedures or multi-neuron constraints. Although these methods are
computationally expensive and thus may be only applied in training small networks, they are particu-
larly useful in safety-critical applications such as aircraft control (Owen et al., 2019) or embedded
medical devices (Shoeb et al., 2009), where models are usually even smaller.

4.2 RGS SCALES GLS TRAINING

We have demonstrated the empirical advantages of GLS instantiated with PGPE. However, as PGPE
is computationally expensive and limited to small models, more scalable methods are required to
train larger networks. In this section, we extensively evaluate RGS, showing that its efficiency allows
us to scale to larger models, surpassing the performance of the SOTA methods on the same network
architecture on standard evaluation settings when ϵ∞ is relatively small.

RGS overcomes the low-rank gradient and computational cost issues of PGPE: even with a small
population size (hence low training costs), we obtain full-rank gradient approximations, enabling
faster and better optimization and allowing us to even scale our experiments to TINYIMAGENET.
We analyze the results of training with RGS on the CNN5 and CNN5-L (a wider version of CNN5)
architectures and compare them with IBP and the SOTA GRAD-based methods (Mao et al., 2024)
trained on CNN7 in Table 3. Encouragingly, RGS significantly boosts the performance of DEEPPOLY
training. We observe that DEEPPOLY + RGS dominates all other methods, substantially improving
even over state-of-the-art GRAD-based methods with hyperparameters fine-tuned on CNN5 and
CNN5-L. Further, the performance of DEEPPOLY + RGS on the small CNN5 becomes comparable to
the performance of GRAD-IBP on the much larger CNN7 architecture used by recent SOTA methods,
and the CNN5-L trained with DEEPPOLY-RGS exceeds the performance of CNN7 trained with IBP by a
large margin. These results agree well with our expectation that bound tightness becomes increasingly
important with network depth, as overapproximation errors can grow exponentially with depth (Shi
et al., 2021; Müller et al., 2023; Mao et al., 2023b). We remark that scaling DEEPPOLY-RGS to
CNN7 used by the SOTA methods is still infeasible due to the high computational cost of evaluating
DEEPPOLY (RGS only doubles the cost!), but we show that RGS can still be used with the cheaper
CROWN-IBP relaxation on this architecture in Table 5 in App. D.1.

We provide more results for the large perturbation settings in Table 6, App. D.2. We show that RGS
improves the performance of tight relaxations by partially mitigating the discontinuity and sensitivity
issues. However, in these settings, the regularization provided by IBP training is very important for
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Table 3: Comparison between networks trained with DEEPPOLY-RGS, CROWN-IBP-RGS and
SOTA GRAD methods on small perturbation settings. The best performance for each dataset and
architecture is highlighted. Numbers in italic represent results for GRAD methods obtained on the
SOTA CNN7 architecture, which is more than 10 times larger than the CNN5 and CNN5-L architectures.

Dataset Network
(params.) Method Nat. Acc.

[%]
Cert. Acc.

[%]
Adv. Acc.

[%]

MNIST
ϵ∞ = 0.1

CNN5
(166K)

IBP 97.94 95.82 95.83
SABR 98.81 96.28 96.31
STAPS 98.74 96.05 96.09
MTL-IBP 98.74 96.25 96.29
CROWN-IBP 98.19 95.42 95.42
CROWN-IBP-RGS 98.43 95.64 95.65
DEEPPOLY 98.50 95.95 95.97
DEEPPOLY-RGS 98.97 97.15 97.16

CNN5-L
(1.25M)

MTL-IBP 98.91 97.17 97.33
DEEPPOLY-RGS 99.21 97.61 97.76

CNN7
(13.3M)

IBP 98.87 98.26 98.27
TAPS 99.16 98.52 98.58

CIFAR-10
ϵ∞ = 2/255

CNN5
(281K)

IBP 54.92 45.36 45.36
SABR 66.73 52.11 52.55
MTL-IBP 67.03 53.81 55.18
CROWN-IBP 60.91 49.45 49.68
CROWN-IBP-RGS 63.22 50.73 51.18
DEEPPOLY 65.43 53.16 54.10
DEEPPOLY-RGS 67.88 54.91 56.12

CNN5-L
(1.25M)

MTL-IBP 70.60 56.36 59.05
DEEPPOLY-RGS 72.64 59.34 61.23

CNN7
(17.2M)

IBP 67.49 55.99 56.10
MTL-IBP 78.82 64.41 67.69

TINYIMAGENET
ϵ∞ = 1/255

CNN5
(1.17M)

IBP 19.55 13.92 13.93
MTL-IBP 26.92 18.07 18.16
CROWN-IBP-LF 21.91 16.43 16.43
CROWN-IBP-LF-RGS 22.97 16.89 16.89
DEEPPOLY-RGS 27.84 19.73 20.40

CNN7
(17.3M)

IBP 26.77 19.82 19.84
MTL-IBP 35.97 27.73 28.49

achieving certifiability. We also show that by applying DEEPPOLY + RGS over networks pretrained
with IBP we can further improve the natural and certified accuracies of these networks.

5 DISCUSSION

This work shows the promise of Gaussian Loss Smoothing (GLS) to enable certified training with tight
relaxations. PGPE and RGS, our proposed methods implementing GLS, achieve strong performance
empirically. However, there are several limitations and challenges that need to be addressed in
future work. First, GLS provably mitigates the discontinuity, non-smoothness, and perturbation
sensitivity issues identified, but it is unknown whether these are all the factors contributing to the
paradox of certified training. Future work should investigate other potential factors and how they
can be addressed. Second, while our methods achieve strong performance, they are computationally
expensive. Future work should focus on more computationally efficient smoothing approaches.
Finally, we present a first step towards training with tight relaxations, but our methods could be
further optimized, similar to how IBP-based methods have been optimized over the years. Overall,
our work opens up a new direction for certified training using tight relaxations, and we hope it will
inspire future work in this area.

6 CONCLUSION

This work shows that the three issues contributing to the paradox of certified training identified by
prior works, namely discontinuity, non-smoothness, and perturbation sensitivity, can be mitigated
by Gaussian Loss Smoothing (GLS), based on sound theoretical analyses. We instantiate GLS with
two methods: Policy Gradients with Parameter-based Exploration (PGPE) and Randomized Gradient
Smoothing (RGS). Empirically, we demonstrate that both improve training with tight relaxations,
presenting a solid step towards overcoming the paradox. Further, we show that both methods have
unique advantages: PGPE allows training with non-differentiable relaxations, while RGS scales
better. Our results confirm the importance of loss continuity, smoothness, and insensitivity in certified
training, and pave the way for future work to leverage tighter relaxations for certified training.
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Nihat Engin Toklu, Timothy Atkinson, Vojtěch Micka, Paweł Liskowski, and Rupesh Kumar Srivas-
tava. Evotorch: Scalable evolutionary computation in python, 2023.

Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. In Proc. of NeurIPS, 2020.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In Proc. of NeurIPS, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S.
Boning, and Inderjit S. Dhillon. Towards fast computation of certified robustness for relu networks.
In Proc. of ICML, 2018.

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In Proc. of ICML, 2018.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. arXiv preprint arXiv:2011.13824, 2020.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In Proc. of NeurIPS, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane S. Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks. In
Proc. of ICLR, 2020.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. ArXiv preprint,
abs/2208.05740, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A BROADER IMPACT

This work focuses on certified defenses against adversarial attacks, which is a crucial component of
trustworthy artificial intelligence. The potential harmful impacts of this work are as follows:

• Certified models can provide a fake sense of security when the models are used in conditions that
permit adversarial attacks that are not considered in the training and certification process.

• Certification and certified training methods are computationally expensive, which will consume
more energy if used for large-scale models and thus possibly harm the environment.

B THEORETICAL POWER OF GLS

B.1 PROOFS

Throughout our proof, we will denote the probability density function of the Gaussian distribution
N (0, σ2I) as pσ(x). A ball of radius r is defined as B(r) := {x | ∥x∥ ≤ r}. Without explicit
mention, the norms are L2 norm.

Lemma B.1. Assume the existence of the smoothed loss function. Gaussian Loss Smoothing is
equivalent to performing a convolution of the loss function with a Gaussian kernel, that is, Lσ(θ) =[
L ∗ N (0, σ2I)

]
(θ).

Proof. Remember that Lσ(θ) := Eϵ∼N (0,σ2I)L(θ + ϵ). Let x := θ + ϵ and use pσ(ϵ) = pσ(−ϵ)
due to symmetry, we have

Lσ(θ) = Eϵ∼N (0,σ2I)L(θ + ϵ)

=

∫
Rd

L(θ + ϵ)pσ(ϵ)dϵ

=

∫
Rd

L(θ + ϵ)pσ(−ϵ)dϵ

=

∫
Rd

pσ(θ − x)L(x)dx (6)

=
[
L ∗ N (0, σ2I)

]
(θ).

Proposition B.2. Assume the nonnegative loss function L(θ) : Rd → R have bounded growth,
that is, L(θ) exp(−∥θ∥2−δ) ≤ M for some δ < 2 and M > 0. Then, Lσ exists and is infinitely
differentiable.

Proof. We prove existence of Lσ first. Equation (6) shows that this is equivalent to prove the
convergence of the integral. Given a fixed θ, pσ(θ−x) ∝ exp(− 1

2σ2 ∥x−θ∥2), thus ∃α1, β1,M1 >

0, such that pσ(θ − x) ≤ α1 exp(−β1∥x∥2) when ∥x∥ > M1. Therefore,∫
Rd\B(M1)

pσ(θ − x)L(x)dx

≤
∫
Rd\B(M1)

α1 exp(−β1∥x∥2)L(x)dx

≤
∫
Rd\B(M1)

α1 exp(−β1∥x∥2)M exp(∥x∥2−δ)dx

≤ α1M

∫
Rd\B(M1)

exp(−β1∥x∥2 + ∥x∥2−δ)dx.
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Further, ∃β2 > 0,M2 ≥ M1, such that exp(−β1∥x∥2 + ∥x∥2−δ) ≤ exp(−β2∥x∥δ/2) when
∥x∥ > M2. Therefore, ∫

Rd\B(M2)

pσ(θ − x)L(x)dx

≤ α1M

∫
Rd\B(M2)

exp(−β1∥x∥2 + ∥x∥2−δ)dx

≤ α1M

[∫
Rd\B(M2)

exp(−β2∥x∥δ/2)dx
]
.

Note that exp(−β2∥x∥δ/2) decays faster than 1
∥x∥2 and

∫
Rd\B(M2)

1
∥x∥2 dx is bounded. Thus, ∀ϵ > 0,

∃M3 ≥ M2, such that
∫
Rd\B(M3)

pσ(θ − x)L(x)dx < ϵ. Therefore, Lσ exists.

Now we turn to its derivative. Using Lemma B.1 and (f ∗ g)′(t) = (f ∗ g′)(t), we know that any n-th
(partial) derivative of Lσ is L ∗ ∂(n)pσ

∂(n)x
, where ∂(n)x is a shorthand for the related variables. Since

n-th partial derivative of a Gaussian pdf is a polynomial (Hermite polynomials) times a Gaussian
pdf, we can bound it similarly to what we have done before, as we can still bound ∂(n)pσ

∂(n)x
with

α1 exp(−β1∥x∥2) under appropriate α1, β1,M1. Therefore, Lσ is infinitely differentiable.

Lemma B.3. If f is continuously differentiable, then f is Lipschitz continuous within a compact set.

Proof. Since f has continuous first-order derivative, it suffices to show that the first-order gradients
are bounded. This is trivial as a continuous function is bounded within any compact set.

Proposition B.4. Assume f ∗ g exists, where g is a probability density function. Then, the deviation
from convexity of f ∗ g is smaller than or equal to the deviation from convexity of f , that is,
D(f ∗ g) ≤ D(f). Equality holds iff f is an affine function.

Proof.

δ[f ∗ g;x,y, λ] = f ∗ g(λx+ (1− λ)y)− λf ∗ g(x)− (1− λ)f ∗ g(y)

=

∫
Rd

[f(λx+ (1− λ)y − z)− λf(x− z)− (1− λ)f(y − z)] g(z)dz

=

∫
Rd

δ[f ;x− z,y − z, λ]g(z)dz

≤ max
x,y∈Rd;λ∈[0,1]

δ[f ;x,y, λ]

∫
Rd

g(z)dz

= D(f)

∫
Rd

g(z)dz

= D(f),

where we used the fact that g is a probability density function, thus
∫
Rd g(z)dz = 1. The above

equality holds iff δ[f ;x,y, λ] is a constant function. Therefore, D(f ∗ g) = maxx,y∈Rd;λ∈[0,1] δ[f ∗
g;x,y, λ] ≤ D(f). Note that to take equality, it is necessary that δ[f ∗ g;x,y, λ] = D(f) for some
x,y, λ, thus δ[f ;x,y, λ] still has to be a constant function. On the other hand, if δ[f ;x,y, λ] is a
constant function, then δ[f ∗ g;x,y, λ] = D(f) for all x,y, λ, thus D(f ∗ g) = D(f). Therefore,
D(f ∗ g) = D(f) iff δ[f ;x,y, λ] is a constant function.

Now we show that δ[f ;x,y, λ] is a constant function iff f is an affine function. If f is an affine
function, then δ[f ;x,y, λ] = f(λx + (1 − λ)y) − λf(x) − (1 − λ)f(y) = 0, thus δ[f ;x,y, λ]
is a constant function. On the other hand, if δ[f ;x,y, λ] is a constant function, then ∃C such that
δ[f ;x,y, λ] = C for all x,y, λ. Let x = y = 0, then C = f(0) − f(0) = 0, thus f(λx + (1 −
λ)y) = λf(x) + (1− λ)f(y) for all x,y, λ. This means f is an affine function.
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Theorem 3.1. Let the parameter θ ∈ Rd. Let the nonnegative loss function L(θ) : Rd → R
have bounded growth, that is, L(θ) exp(−∥θ∥2−δ) ≤ M for some δ < 2 and M > 0. Then, the
loss smoothed by an isotropic Gaussian N (0, σ2I), defined as Lσ(θ) := Eϵ∼N (0,σ2I)L(θ + ϵ), is
infinitely differentiable. In addition, the deviation from convexity of the smoothed loss never exceed
that of the original loss, that is, D(Lσ) ≤ D(L); equality holds iff L is an affine function. Further,
assuming θ is in a compact set throughout optimization, Lσ is also Lipschitz continuous.

Proof. By Proposition B.2, Lσ exists and is infinitely differentiable. Further, by Lemma B.1 and
Proposition B.4, D(Lσ) ≤ D(L); equality holds iff L is an affine function. Assuming θ is in a
compact set, by Lemma B.3, Lσ is Lipschitz continuous.

B.2 ALIGNMENT OF LOCAL AND GLOBAL MINIMA UNDER GAUSSIAN LOSS SMOOTHING

Without loss of generality, we consider a quantized function f(x) =
∑n

i=0 aiI(x ∈ [bi, bi+1]), where
I is the threshold function and −∞ = b0 ≤ b1 ≤ · · · ≤ bn ≤ bn+1 = +∞. The global minimum
of this function is mini ai, achieved by x ∈ [bi∗ , bi∗+1] where i∗ ∈ argmini ai. Now, the derivative
of its Gaussian smoothed loss is f ′

σ(x) =
1
σ

∑n
i=1(ai − ai−1)p(

bi−x
σ ), where p is the p.d.f. of the

standard normal distribution. One may immediately find that the minimum of the smoothed loss is
scale-invariant: the minimum of fcσ(cx) with bi scaled by c is the same as the minimum of fσ(x).
Therefore, if we increase σ to smoothen a fixed function, shallower minima with smaller widths will
be smoothed out one by one. Taking σ to ∞, we find that the derivative converges to zero, making
the smoothed loss a constant function.

We use the same quantized function to study the effect smoothing has on the alignment of minimum
points. As observed before, when we take σ to ∞, the derivative on the whole domain converges
to zero, so every point becomes a minimum, therefore we fail to get a proper alignment. On the
other hand, by taking σ to zero, the factor p( bi−x

σ ) becomes a Dirac delta function δ(x = bi), thus
every point except the boundary points becomes a local minimum, and we get the alignment of global
minima. Based on these intuitions, one can pick a σ such that narrow local minima get smoothed out,
and wide local minima are left close to their original locations, thus the optimization process can be
guided towards the global minimum.

B.3 PROPERTIES OF RANDOMIZED GRADIENT SMOOTHING

Discontinuity Considering again the quantized function as defined in App. B.2, we observe that the
derivative of the original function is zero almost everywhere, so the smoothed gradient estimated by
RGS will also be zero. This means that RGS is incapable of finding the minimum of the discontinuous
functions in general. However, in practice we rarely work with quantized loss functions we used for
the analysis; instead, we can model the discontinuous loss function as h(x) = f(x) + g(x), where
f(x) is discontinuous like the quantized function and g(x) is continuous. In this case, the derivative
of h is equal to the derivative of g almost everywhere, and thus the RGS algorithm will converge to
the same locations when optimizing h as when optimizing g. If the minima of g and h are sufficiently
aligned, we can expect RGS to find a good minimum of h.

Higher Dimensions In higher dimensions, however, the behavior of RGS becomes unpredictable,
as not every discontinuous function h can be decomposed into a continuous function g and a quantized
function f (e.g. h(x1, x2) = x1 · sign (x2) consists of two plane sections separated by a discontinuity
along the x1-axis). In this case, the equivalent loss landscape that the RGS algorithm is optimizing is
strongly dependent on the optimization path and the starting point and therefore cannot be defined.

C ABLATION STUDIES

C.1 POPULATION SIZE

While PGPE recovers Gaussian Loss Smoothing in expectation, the quality of the gradient approxi-
mation depends strongly on the population size nps. In particular, a small population size nps induces
a high-variance estimate of the true smoothed loss, leading to noisy gradient estimates and thus slow
learning or even stability issues. We illustrate this in Figure 6 where we show the loss surface along
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`2-norm of weight perturbation ||∆θ||2
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Figure 6: Effect of the population size nps on the smoothness of the induced loss surface in PGPE.
Note that the 5 plots have been spaced by artificially adding offsets on the y-axis. This should not
be regarded as a quantitative plot ordering the magnitude of the loss, but rather as a qualitative
comparison of the smoothness induced by sampling with different population sizes.

the gradient direction for different population sizes. We observe that for small population sizes the
loss surface is indeed very noisy, only becoming visually smooth at nps = 512. Additionally, PGPE
computes a gradient approximation in an nps

2 -dimensional subspace, thus further increasing gradient
variance if nps is (too) small compared to the number of network parameters.

Table 4: Effect of the population size nps on accu-
racy and training time with PGPE + DEEPPOLY
training on CNN3.

Popsize Nat. [%] Cert. [%] GPU h

Init 97.14 94.02 -
64 97.22 94.07 88

128 97.22 94.13 160
256 97.30 94.19 304
512 97.27 94.22 596

1024 97.43 94.50 1192

0 50 100 150
Epoch

0.23

0.25

0.27
Train Loss

nps = 64

nps = 128

nps = 256

nps = 512

nps = 1024

Figure 7: Evolution of Train Loss during train-
ing with different values for popsize nps. Note
that for nps = 64 we trained with a lower learn-
ing rate because the value used in the other
settings would make training unstable.

To assess the effect this has on the performance of PGPE training, we train the same CNN3 on
MNIST using population sizes between 64 and 1024, presenting results in Table 4. We observe that
performance does indeed improve significantly with increasing population sizes (note the relative
performance compared to initialization). This becomes even more pronounced when considering the
training dynamics (see Figure 7). Unfortunately, the computational cost of PGPE is significant and
scales linearly in the population size. We thus choose nps = 256 for all of our main experiments, as
this already leads to training times of more than 1 week on 8 L4 GPUs for some experiments.

Train Dynamics when varying population size In Figure 7 we present the evolution of the
Training Loss during training with different values for popsize nps. We observe significantly slower
training as we decrease nps, confirming the theoretical prediction that using lower popsize decreases
the quality of gradient estimations due to increased variance in the loss-sampling process.

C.2 STANDARD DEVIATION

The standard deviation σ used for Gaussian Loss Smoothing has a significant impact on the resulting
loss surface as we illustrated in Figure 4 and discussed in §3. If σ is chosen too small, the loss surface
will still exhibit high sensitivity and gradients will only be meaningful very locally as discontinuities
are barely smoothed. On the other hand, if σ is chosen too large, the loss surface will become very
flat and uninformative, preventing us from finding good solutions.

When estimating the smoothed loss in PGPE via sampling at moderate population sizes nps, the
standard deviation σPGPE additionally affects the variance of the loss and thus gradient estimate. We
illustrate this in Figure 8, where we not only see the increasing large-scale smoothing effect discussed
above but also an increasing level of small-scale noise induced by a large σPGPE relative to the chosen
population sizes nps.
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To assess the effect this practically has on PGPE training, we train for 50 epochs with different
standard deviations σPGPE and present the results in Figure 9. As expected, we clearly observe that
both too small and too large standard deviations lead to poor performance. However, and perhaps
surprisingly, we find that training performance is relatively insensitive to the exact standard deviation
as long as we are in the right order of magnitude between 10−3 and 10−2.

−0.001 0.000 0.001
`2-norm of weight perturbation ||∆θ||2

1.22

1.24

DeepPoly Loss

σ = 1× 10−4

σ = 3× 10−5

σ = 3× 10−6

raw

Figure 8: Effect of the standard deviation σPGPE on
the induced loss surface in PGPE at a small popula-
tion sizes of nps = 32.

10−5 10−4 10−3 10−2 10−1

PGPE standard deviation σPGPE

0.4

0.5

Loss

Train Loss

Val Loss

Figure 9: Train and Validation Losses after
50 epochs of training for different values of
σPGPE.

D ADDITIONAL EXPERIMENTAL DATA

D.1 TRAINING CROWN-IBP-RGS ON CNN7

While DEEPPOLY-RGS is too computationally extensive for scaling to CNN7, we can use RGS
in combination with CROWN-IBP to prove that the advantages of GLS scale even to SOTA
architectures. We present the results of training CNN7 with CROWN-IBP-RGS in Table 5. We
observe that RGS significantly increases the performance of CROWN-IBP when applied on CNN7
without BatchNorm layers, but the improvement is less pronounced when using BatchNorm layers.

In order to accomodate the use of BatchNorm layers with RGS, we compute the estimated gradients by
using the BatchNorm statistics independently for each sample of perturbed weights. To obtain the test
statistics, we reset the running stats to the population statistics for the mean trained network after each
epoch, following the advice of Mao et al. (2024). While this approach is the most straightforward, it
might not be the most effective way to use BatchNorm layers with RGS, and we leave the exploration
of more sophisticated methods for future work.

Table 5: Comparison between CNN7 networks trained with CROWN-IBP-RGS and SOTA GRAD
methods on small perturbation settings

Dataset Network Method Nat. Acc.
[%]

Cert. Acc.
[%]

Adv. Acc.
[%]

MNIST
ϵ∞ = 0.1

CNN7
with BN

IBP 98.87 98.26 98.27
CROWN-IBP 99.10 98.13 98.22
CROWN-IBP-RGS 99.11 98.05 98.09
TAPS 99.16 98.52 98.58

CNN7
no BN

IBP 98.50 97.40 97.42
CROWN-IBP 98.83 97.94 97.94
CROWN-IBP-RGS 99.19 98.09 98.18

CIFAR-10
ϵ∞ = 2/255

CNN7
with BN

IBP 67.49 55.99 56.10
CROWN-IBP 70.90 58.80 59.93
CROWN-IBP-RGS 70.82 59.04 60.19
MTL-IBP 78.82 64.41 67.69

CNN7
no BN

IBP 63.13 52.09 52.27
CROWN-IBP 67.82 55.36 56.62
CROWN-IBP-RGS 68.46 56.30 57.37

Finally, the results showcase that the promise of using GLS for certified training with tighter relax-
ations also scales to SOTA architectures.
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D.2 TRAINING CNN5 IN THE LARGE PERTURBATION SETTINGS

Table 6: Accuracies of a CNN5 depending on training method.

Dataset Method Nat. [%] Cert. [%] Adv. [%]

MNIST
ϵ∞ = 0.3

IBP (used as init) 94.95 87.71 87.80
SABR 97.78 88.26 89.33
MTL-IBP 97.08 88.68 88.95

DEEPPOLY-RGS 95.79 87.04 87.17
DEEPPOLY-RGS (IBP) 95.47 88.69 88.79

CIFAR-10
ϵ∞=8/255

IBP (used as init) 41.05 29.12 29.14
SABR 43.30 29.50 29.55
MTL-IBP 44.53 29.62 29.73

DEEPPOLY-RGS 40.10 25.25 25.93
DEEPPOLY-RGS (IBP) 41.66 29.25 29.31

In Table 6 we provide experimental data for training CNN5 networks using DEEPPOLY + RGS. We
observe that while DEEPPOLY + RGS manages to obtain similar natural accuracies with gradient-
based IBP, the certified accuracies are significantly lower. This is likely because to gain certifiability
for the large epsilon settings the networks require a stronger regularisation than the DEEPPOLY
relaxation can provide.

This is in agreement with the findings of Mao et al. (2024), which after extensive hyperparameter
tuning, show that IBP trained networks can obtain very close performance to SOTA methods in the
large perturbation settings. For example, while the SOTA method, MTL-IBP, improves IBP by more
than 10% for CIFAR-10 ϵ = 2/255, it merely improves IBP by 0.13% for CIFAR-10 ϵ = 8/255. We
observe a similar pattern in our experiments with standard certified training methods on CNN5.

To verify that training with tighter relaxations can still yield improvements in the large perturbation
settings, we initialize the CNN5 networks with IBP-trained weights and further train them with
DEEPPOLY + RGS. The results are shown in Table 6, denoted by DEEPPOLY-RGS (IBP). We observe
that training with DEEPPOLY + RGS increases both natural and certified accuracies when compared
to the IBP-trained initialization, with certified accuracy reaching a similar level with MTL-IBP on
MNIST 0.3. This demonstrates the ability of tighter relaxations to still improve training in the large
perturbation settings, but more work is needed to surpass the performance of SOTA methods.

Discussion on the regularization induced by IBP for large preturbations Note that L1 regu-
larization has been sufficiently tuned by Mao et al. (2024) for MTL-IBP, thus only increasing L1

regularization strength cannot achieve the kind of regularization needed for certifiability. Therefore,
we speculate that large ϵ leads to much more unstable neurons, leading to exponential growth of
certification difficulty. Thus, for large ϵ, strong (and maybe unnecessary to robustness) regularization
is required to further reduce certification difficulty. Note that the effects of this IBP regularization are
more complex than just limiting the magnitude of the weights, as described by Mao et al. (2023b).

D.3 COMPARISON BETWEEN RGS AND PGPE ON CNN3 AND CNN3-tiny

In Table 7 we provide additional experimental data comparing the performance of PGPE and RGS on
CNN3 and CNN3-tiny. In the case of CNN3, we observe that RGS and PGPE obtain similar performance
on MNIST 0.1, but RGS is actually significantly better on CIFAR 2/255 (note that both are better than
IBP and DEEPPOLY trained with Adam). We hypothesize that this might be due to: (1) on CIFAR-10
the CNN3 network has more parameters than on MNIST ( 5k vs 7k due to different input sizes), thus
the parameter space is larger; (2) we train for the same number of epochs on both datasets with PGPE,
but standard certified training has shown networks on CIFAR-10 to converge slower than on MNIST.
As a result, since PGPE trains slower due to the low-rank gradient problem, CIFAR-10 makes this
worse, and insufficient training outweighs the theoretical benefit. These claims are further supported
by our results for CNN3-tiny trained on MNIST where we observe that PGPE is significantly better
than RGS, likely due to the smaller parameter space and faster convergence of the training.
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Table 7: Comparison of PGPE and RGS on CNN3

Dataset Network (params.) Method Nat. [%] Cert. [%] Adv. [%]

MNIST
ϵ∞ = 0.1

CNN3-tiny (1.1k)

IBP-GRAD 89.76 82.46 82.48
DEEPPOLY-GRAD 89.24 68.47 68.57
DEEPPOLY-PGPE 91.94 85.00 85.04
DEEPPOLY-RGS 91.33 82.66 82.68

MNIST
ϵ∞ = 0.1

CNN3 (5.2k)

IBP-GRAD 96.02 91.23 91.23
DEEPPOLY-GRAD 95.95 90.04 90.08
DEEPPOLY-PGPE 97.44 91.53 91.79
DEEPPOLY-RGS 97.37 91.88 92.03

CIFAR-10
ϵ∞ = 2/255

CNN3 (6.8k)

IBP-GRAD 48.05 37.69 37.70
DEEPPOLY-GRAD 47.70 36.72 36.72
DEEPPOLY-PGPE 54.17 38.95 40.20
DEEPPOLY-RGS 54.93 41.14 42.03

D.4 COMPARISON OF GLS AND SHARPNESS-AWARE MINIMIZATION (SAM)

The gradient computation by perturbing the network weights used in PGPE and RGS has some
similarities with the Sharpness-Aware Minimization (SAM, Foret et al. (2020)) algorithm. However,
the SAM algotithm is fundamentally different to GLS. This is because GLS takes the expectation
of neighborhood loss rather than the worst case loss; in fact, SAM is closer to adversarial training
with FGSM (Goodfellow et al., 2015) rather than GLS. In particular, SAM does not resolve the
discontinuity problem, while GLS provably solves it (Theorem 3.1). To see this, consider the threshold
function I(x > 0) and an initial x0 = 0.1. Any single-point gradient based methods (including
SAM) will only get zero gradient, and thus cannot optimize it. Therefore, while it is likely that GLS
has the benefit of reduced sharpness as well, GLS enjoys fundamentally different benefits to SAM.

To confirm this empirically, we apply SAM to IBP and DEEPPOLY training. Specifically, we
update the parameters with gradients computed based on the adversarially perturbed network w′ =
w+ρ×∇wL/∥∇wL∥2. We train with IBP and DEEPPOLY on MNIST ϵ = 0.1 with the same CNN3
architecture used in the paper. The results are shown in Table 8, all networks certified with MN-BaB.

Table 8: Comparison of GLS methods with SAM. CNN3 networks trained on MNIST ϵ = 0.1.

Method Nat. [%] Cert. [%]

IBP-GRAD 96.02 91.23
IBP-SAM ρ = 0.1 96.08 90.20
IBP-SAM ρ = 0.01 96.32 93.32
IBP-SAM ρ = 0.001 95.80 91.73

DEEPPOLY-GRAD 95.95 90.04
DEEPPOLY-SAM ρ = 0.1 94.22 88.39
DEEPPOLY-SAM ρ = 0.01 96.93 92.34
DEEPPOLY-SAM ρ = 0.001 96.95 90.91
DEEPPOLY-PGPE 97.44 91.53
DEEPPOLY-RGS 97.37 91.88

We observe that for a correctly chosen hyperparameter (ρ = 0.01), SAM does indeed improve
performance for IBP and DP. While SAM performs better than PGPE for this very shallow network,
as expected from our previous theoretical analysis, it does not address the paradox. In particular,
IBP-SAM still performs better than DP-SAM uniformly for every choice of ρ. While combining SAM
with PGPE or other certified training methods might thus constitute an interesting future direction,
it does not explain the reranking of approximation methods (DEEPPOLY-PGPE > IBP-PGPE vs
IBP-SAM > DEEPPOLY-SAM) we observe for PGPE. We therefore conclude that the sharpness
aware aspect of PGPE is not (solely) responsible for its effectiveness in resolving the paradox of
certified training.
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E ADDITIONAL TRAINING DETAILS

E.1 STANDARD CERTIFIED TRAINING

We train with the Adam optimizer (Kingma & Ba, 2015) with a starting learning rate of 5× 10−5 for
70 epochs on MNIST and 160 epochs on CIFAR-10 and TINYIMAGENET. We use the first 20 epochs
on MNIST and 80 epochs on CIFAR-10 and TINYIMAGENET for ϵ-annealing, with the first epoch
having ϵ = 0 for CIFAR-10 and TINYIMAGENET. We decay the learning rate by a factor of 0.2 after
epochs 50 and 60 for MNIST and respectively 120 and 140 for CIFAR-10 and TINYIMAGENET.
For certified training on MNIST and CIFAR-10, we use the IBP initialization proposed by Shi et al.
(2021). For PGD training and for certified training on TINYIMAGENET we use the Kaiming uniform
initialization (He et al., 2015).

E.2 PGPE TRAINING

We use a training schedule of 150 epochs, with a batch size of 512 for MNIST and 128 for CIFAR-10.
We train with a starting learning rate of 0.0003 and we decay it twice by a factor of 0.4 after the 110th

and 130th epoch. We use the first 50 epochs for ϵ-annealing only when training with the large value
of ϵ for each dataset (MNIST ϵ = 0.3 and CIFAR-10 ϵ = 8/255). Due to time constraints, we start all
training rounds from models trained with the PGD loss in a standard gradient-based setting.

Training with non-differentiable bounding methods In addition, for training with α-CROWN +
PGPE, we use the same training schedule and hyperparameters as for standard PGPE training. For
the slope optimization procedure of α-CROWN, we initialize all slopes with the value of 0.5 and we
conduct only one optimization step with step size 0.5 for each batch, resulting in all slopes having
a value of either 0.0 or 1.0. In this way, we obtain a boost in tightness when compared to standard
DeepPoly, while increasing the computational cost only by a factor of 2. Slope optimization with
multiple steps and smaller step sizes can further increase the tightness of the relaxation, but at the
cost of increased computational complexity.

E.3 RGS TRAINING

We use the same training schedules and hyperparameters as Standard Certified Training. In addition,
we use a population size of nps = 2 for all experiments, and an initial standard deviation of
σRGS = 10−3 for all experiments. We decay the standard deviation used for sampling gradients by a
factor of 0.4 at the same training steps as the learning rate. We use the same initialization schemes as
for standard certified training, unless specified otherwise.

E.4 ARCHITECTURES

In Table 9 we present the network architectures used for all our experiments.

Table 9: Network architectures of the convolutional networks for CIFAR-10 and MNIST. All layers
listed below are followed by a ReLU activation layer. The output layer is omitted. ‘CONV c h×w/s/p’
corresponds to a 2D convolution with c output channels, an h×w kernel size, a stride of s in both
dimensions and an all-around zero padding of p.

CNN3-tiny CNN3 CNN5 CNN5-L

CONV 2 5×5/2/2 CONV 8 5×5/2/2 CONV 16 5×5/2/2 CONV 64 5×5/2/2
CONV 2 4×4/2/1 CONV 8 4×4/2/1 CONV 16 4×4/2/1 CONV 64 4×4/2/1

CONV 32 4×4/2/1 CONV 128 4×4/2/1
FC 512 FC 512

E.5 DATASET AND AUGMENTATION

We use the MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky et al., 2009) and TINYIMAGENET
(Le & Yang, 2015) datasets for our experiments. All are open-source and freely available with
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unspecified license. The data preprocessing mostly follows De Palma et al. (2024). For MNIST, we
do not apply any preprocessing. For CIFAR-10 and TINYIMAGENET, we normalize with the dataset
mean and standard deviation and augment with random horizontal flips. We apply random cropping
to 32× 32 after applying a 2-pixel zero padding at every margin for CIFAR-10, and random cropping
to 64× 64 after applying a 4-pixel zero padding at every margin for TINYIMAGENET. We train on
the corresponding train set and certify on the validation set, as adopted in the literature (Shi et al.,
2021; Müller et al., 2023; Mao et al., 2023a; De Palma et al., 2024).

E.6 TRAINING COSTS (TIME AND RESOURCES)

For PGPE and RGS training, we used between 2 and 8 NVIDIA L4-24GB or NVIDIA A100-40GB
GPUs. For standard certified training and for certification of all models we used single L4 GPUs.

In Table 10 we present a detailed analysis of the training costs of the PGPE and RGS methods for all
of our experimental settings (Note that the cost of DEEPPOLY-PGPE for CNN5 was estimated based
on training for only 1 epoch). In Table 11 we present the training costs for the baseline standard
certified training methods for comparison.

Table 10: Training costs and workload distribution across GPUs / actors for each train setting.

Datset Network Method GPUs Num.
Actors

Time/epoch
(min)

GPU-h/
epoch

MNIST

CNN3-tiny
DEEPPOLY-PGPE 4 x L4 4 25 1.73
αCROWN-PGPE 8 x L4 8 44 5.86

CNN3

IBP-PGPE 2 x L4 4 2.8 0.09
CROWN-IBP-PGPE 2 x L4 4 8.5 0.28
HBOX-PGPE 8 x L4 8 31 4.13
DEEPPOLY-PGPE 8 x L4 8 27 3.60

CNN5
DEEPPOLY-PGPE (est.) 8 x L4 8 ≈ 300 ≈ 40
DEEPPOLY-RGS 8 x L4 8 7.5 1

CNN5-L DEEPPOLY-RGS 8 x A100 8 35 4.68

CIFAR-10

CNN3
IBP-PGPE 2 x L4 4 6.9 0.23
CROWN-IBP-PGPE 4 x L4 8 8.5 0.57
DEEPPOLY-PGPE 8 x L4 8 42 5.6

CNN5
DEEPPOLY-PGPE (est.) 8 x L4 8 ≈ 360 ≈ 48
DEEPPOLY-RGS 8 x L4 8 16 2.2

CNN5-L DEEPPOLY-RGS 8 x A100 8 33 4.4

TINYIMAGENET CNN5 DEEPPOLY-RGS 8 x A100 8 41 5.5
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Table 11: Training times of CNN5 on 1xL4 GPU with standard autograd training depending on training
method.

Dataset Method Train Time
(1xL4 gpu)

MNIST

PGD 15m
IBP 10m
SABR 20m
STAPS 25m
MTL-IBP 40m

CIFAR-10

PGD 1h30m
IBP 1h00m
SABR 2h00m
STAPS 2h30m
MTL-IBP 3h10m

TINYIMAGENET
PGD 3h15m
IBP 2h20m
MTL-IBP 4h20m
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